Homework Set 4

(sect 1.9-2.2)
For questions 1 and 2, assume T is a linear transformation. Find the standard matrix of T .

1. $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}, T\left(\boldsymbol{e}_{1}\right)=(1,0), T\left(\boldsymbol{e}_{2}\right)=(5,2), T\left(\boldsymbol{e}_{3}\right)=(2,1)$, and $T\left(\boldsymbol{e}_{4}\right)=(-2,0)$
2. $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, T\left(\boldsymbol{e}_{1}\right)=(1,1,-1), T\left(\boldsymbol{e}_{2}\right)=(0,2,-3)$, and $T\left(\boldsymbol{e}_{3}\right)=(-5,1,0)$

For questions 3 and 4 , show that $T\left(x_{1}, x_{2}, x_{3}\right)=\left(0,5 x_{2}, x_{1}-3 x_{2}, x_{2}+x_{3}\right)$ is a linear transformation. Note that x_{1}, x_{2}, \ldots are not vectors but entries in vectors.
3. Show T is linear using the definition of a linear transformation.
4. Show T is linear by finding a matrix that implements the mapping.

For questions 5 and 6, determine if the linear transformation is (a) one-to-one and (b) onto. Justify each answer. (hint: use the standard matrix of the linear transformation)
5. $T\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}, 0, x_{2}-x_{3}, 0\right)$
6. $T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=2 x_{1}-2 x_{3}+3 x_{4}$

For questions 7 through 9 , compute each matrix sum or product if it is defined. If an expression is not defined, explain why. Use the matrices defined below.

$$
A=\left[\begin{array}{ccc}
8 & 0 & 2 \\
-2 & 3 & 6
\end{array}\right], B=\left[\begin{array}{ccc}
-3 & -1 & 0 \\
4 & 3 & 5
\end{array}\right], C=\left[\begin{array}{cc}
-1 & 2 \\
4 & 7
\end{array}\right], D=\left[\begin{array}{cc}
2 & 1 \\
2 & -3
\end{array}\right]
$$

7. $-3 A, B-2 A, 5 C+D, A C, C D$
8. $5 I_{2}-D,\left(5 I_{2}\right) D$
9. Let $A=\left[\begin{array}{cc}2 & 5 \\ -3 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}4 & -5 \\ 3 & k\end{array}\right]$. What value(s) of k, if any will make $A B=B A$?
10. Let $A=\left[\begin{array}{cc}2 & -3 \\ -4 & 6\end{array}\right], B=\left[\begin{array}{ll}8 & 4 \\ 5 & 5\end{array}\right]$, and $C=\left[\begin{array}{cc}5 & -2 \\ 3 & 1\end{array}\right]$. Verify that $A B=A C$ but $B \neq C$.

Find the inverses of the matrices in questions 12 through 14 if they exist.
11. $\left[\begin{array}{ll}2 & 7 \\ 4 & 8\end{array}\right]$
12. $\left[\begin{array}{ccc}2 & 5 & -1 \\ 3 & 2 & 2 \\ 0 & 1 & 3\end{array}\right]$
13. $\left[\begin{array}{ccc}1 & -2 & 1 \\ 4 & -7 & 3 \\ -2 & 6 & -4\end{array}\right]$
14. Let $A=\left[\begin{array}{cc}1 & 3 \\ 7 & 13\end{array}\right], \boldsymbol{b}_{\mathbf{1}}=\left[\begin{array}{c}-2 \\ 3\end{array}\right], \boldsymbol{b}_{2}=\left[\begin{array}{c}4 \\ -1\end{array}\right], \boldsymbol{b}_{3}=\left[\begin{array}{l}2 \\ 5\end{array}\right]$, and $\boldsymbol{b}_{4}=\left[\begin{array}{l}6 \\ 4\end{array}\right]$
a. Find A^{-1}
b. Use what you found in part (a) to solve the 4 equations: $A \boldsymbol{x}=\boldsymbol{b}_{\mathbf{1}}, A \boldsymbol{x}=\boldsymbol{b}_{\mathbf{2}}$, $A \boldsymbol{x}=\boldsymbol{b}_{3}$, and $A \boldsymbol{x}=\boldsymbol{b}_{4}$
15. Use matrix algebra to show that if A is invertible and D satisfies $A D=I$, then $D=A^{-1}$.

